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1. INTRODUCTION

Minimal residual methods, such as MINRES and GMRES, are well-known iterative versions of direct
procedures for reducing a matrix to special condensed forms. The method of reduction used in these proce-
dures is a sequence of unitary similarity transformations, while the condensed form is a tridiagonal matrix
(MINRES) or a Hessenberg matrix (GMRES).

A symmetric matrix 

 

A

 

 having nonreal entries cannot be reduced to tridiagonal form by a unitary similar-
ity transformation. On the other hand, 

 

A

 

 can be brought to tridiagonal form by a sequence of unitary con-
gruences. This fact was used in [1] to construct the method CSYM for solving systems of linear equations
with complex symmetric coefficient matrices.

The authors of [1] claim that CSYM is fundamentally different from Krylov subspace methods. Indeed,
the trial subspaces in which CSYM seeks approximate solutions are not Krylov subspaces. However, we
show in Section 2 that CSYM can be interpreted as the projection onto 

 

�

 

n

 

 of the conventional Lanczos pro-
cess performed in a space of double dimension for the Hermitian matrix

 

(1)

 

and a special initial vector. (The bar over the symbol of a matrix or a vector means entrywise conjugation.)
In Section 4, this interpretation allows us to extend CSYM to systems with conjugate-normal coefficient
matrices. Recall that a complex 

 

n

 

 

 

× 

 

n

 

 matrix 

 

A

 

 is said to be conjugate-normal if

In particular, symmetric, skew-symmetric, and unitary matrices are conjugate-normal.
For a conjugate-normal matrix 

 

A

 

, matrix (1) is normal in the conventional sense. Consequently, our
extension of CSYM is based on the generalized Lanczos process, which was proposed in [2] exactly for nor-
mal matrices. A brief description of this process is given in Section 3.
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The condensed form of the normal matrix  calculated by the generalized Lanczos process is a block
tridiagonal matrix whose diagonal blocks have slowly increasing orders. The condensed form of the conju-
gate-normal matrix 

 

A

 

 is obtained by projecting the Lanczos process onto 

 

�

 

n

 

 and is also block tridiagonal.

Suppose that  satisfies the equation

 

(2)

 

where 

 

f

 

(

 

x

 

, 

 

y

 

)

 

 is a polynomial of degree 

 

k

 

 

 

�

 

 

 

n

 

. Then, after attaining the value 

 

k

 

, the orders of the diagonal

blocks stabilize at this value, while the condensed forms of  and 

 

A

 

 become band matrices with the band-
width depending on 

 

k

 

. For the iterative process, this means that the depth of the recursion specifying the
next vector does not exceed 

 

d

 

.
In Section 5, a detailed discussion of the MINRES-CN2 method is given. This is a variant of our exten-

sion of CSYM designed for the case where the polynomial 

 

f

 

 in formula (2) has the degree 

 

k

 

 = 2. The numer-
ical results obtained with this method and its comparison with GMRES are given in Section 6.

2. METHOD CSYM

Suppose that we have to solve the system of linear equations

 

Ax

 

 = 

 

b

 

(3)

 

with a complex symmetric matrix 

 

A

 

. For a system of a modest order, this can be done by finding a unitary
matrix that brings 

 

A

 

 to tridiagonal form by the congruence transformation

 

Q

 

T

 

AQ

 

 = 

 

T

 

. (4)

 

As soon as 

 

Q

 

 is found, solving system (3) reduces to solving the tridiagonal system of linear equations

 

Ty

 

 = 

 

c

 

,

 

where

 

y

 

 = 

 

Q

 

*

 

x

 

,

 

c

 

 = 

 

Q

 

T

 

b

 

.

 

The matrix 

 

Q

 

 can be constructed as a finite product of Householder reflections or rotations.
The above method is inapplicable to large matrices 

 

A

 

. However, the idea of reduction to tridiagonal form
is completely reasonable in this case as well. Denote by 

 

q

 

1

 

, …, 

 

q

 

n

 

 the columns of 

 

Q

 

 and assume that 

 

T

 

 in
relation (4) is an irreducible matrix (that is, all the entries 

 

t

 

i

 

 + 1, 

 

i

 

 on its secondary diagonal are nonzero).
Rewrite (4) as

and equate the columns with the same indices in this matrix relation. This yields

 

(5)

 

Furthermore,

 

(6)

(7)

(8)

(9)

 

Equalities (5)–(9) are very similar to the formulas of the Lanczos method. The main difference is that,
instead of the previously calculated vectors 

 

q

 

j

 

, the current product 

 

Aq

 

i

 

 is orthogonalized to the conjugate
vectors .

Â

Â

f Â Â*,( ) 0,=

Â

AQ QT=

Aq1 t11q1 t21q2,+=

Aq2 t12q1 t22q2 t32q3,+ +=

…
Aqn tn 1– n, qn 1– tnnqn.+=

tii Aqi qi,( ), i 1 2 … n,, , ,= =

t21 Aq1 t11q1– 2,=

ti 1 i,+ Aqi tiiqi– ti 1– i, qi 1–– 2, i 2 3 … n 1,–, , ,= =

ti i 1+, ti 1 i,+ , i 1 2 … n 1.–, , ,= =

q j
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Using this analogy with the Lanczos method, we can seek a solution to system (3) by constructing an
orthonormal system q1, q2, … by formulas (5)–(9). An appropriate choice of the initial vector is

(10)

Approximate solutions are sought in the trial subspaces

(11)

In such a process, we expect that an approximate solution of reasonable quality can already be found for
k � n.

The algorithm CSYM, which was proposed in [1], combines recursion (5)–(9) with the principle of
orthogonal residual as a device for seeking an approximate solution in the subspace �k. Thus, CSYM is an
analog of the minimal residual method MINRES, which was designed for systems with Hermitian (or real
symmetric) matrices. Due to the above-mentioned difference in the orthogonalization methods, trial sub-
spaces (11) used in CSYM are not Krylov subspaces. For instance, for k = 2m, we have

(12)

It follows that �k is spanned by the two sequences

and

rather than by a single power sequence as in the Lanczos method. These two sequences are generated by the
matrix

(rather than by A!) and correspond to the initial vectors q1 and .

Despite this fact and the opinion stated in [1], CSYM is not fundamentally different from Krylov sub-
space methods. Indeed, let Hermitian matrix (1) be associated with a symmetric matrix A and the vector

(13)

be associated with the initial vector q1. The power sequence generated by the matrix  and by the vector v
has the form

(14)

It determines the progress of the Lanczos method for . At the same time, the upper halves of vectors (14)
constitute the sequence

whose initial segments span the trial subspaces of CSYM. In this sense, CSYM can be regarded as the pro-
jection onto �

n
 of the Lanczos process performed in a space of double dimension.

The established relation between CSYM and the Lanczos method is used in Section 4 for extending
CSYM to the entire class of conjugate-normal matrices. This extension is based on the generalized Lanczos
process described in the next section.

q1
1
b 2

---------b.=

�k span q1 … qk, ,{ }.=

�k span q1 Aq1 AAq1 AA( )Aq1 … AA( )m 1–
q1 AA( )m 1–

Aq1, , , , , ,{ }.=

q1 AAq1 … AA( )m 1–
q1, , ,

Aq1 AA( )Aq1 … AA( )m 1–
Aq1., , ,

AL AA=

Aq1

v
q1

q1⎝ ⎠
⎜ ⎟
⎛ ⎞

�
2n∈=

Â

v , Âv Aq1

Aq1⎝ ⎠
⎜ ⎟
⎛ ⎞

, Â
2
v

ALq1

ALq1⎝ ⎠
⎜ ⎟
⎛ ⎞

, Â
3
v

ALAq1

ALAq1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

, ….= = =

Â

q1 Aq1 ALq1 ALAq1 …,, , , ,
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3. GENERALIZED LANCZOS PROCESS

Let A be a normal n × n matrix. For an arbitrary (nonzero) vector b ∈ �n
, the sequence

(15)

is called the generalized power sequence generated by the pair (A, b).

It is convenient to think of sequence (15) as consisting of segments of length 1, 2, 3, 4, …, respectively.
The kth segment, which is called the kth layer, can be described as the set of vectors u = Wk(A, A*)b, where
Wk(s, t) varies over the set of kth degree monomials in (commuting) variables s and t. The symbol W0(s, t)
denotes the empty word; thus, W0(A, A*)b is simply the vector b.

The essence of the generalized Lanczos process is the orthogonalization of sequence (15). However, as
in the conventional Lanczos method, this power sequence is not constructed explicitly. The details of the
orthogonalization process are specified in Section 5, where the method MINRES-CN2 is discussed. Here,
we wish to point to the relation between this process and the unitary reduction of a normal matrix to a special
condensed form.

For simplicity, we assume that the span of vectors (15) is the entire space �
n
. In this case, the vectors q1,

…, qn produced by the generalized Lanczos process form an orthonormal basis in �
n
. We regard A as a lin-

ear operator acting in �
n
. It can be shown (see [2]) that the matrix of this operator in the basis q1, …, qn has

the block tridiagonal form

(16)

The orders of the diagonal blocks H11, H22, … are uniquely determined by sequence (15). To explain this,
we call the span of the first m + 1 layers the mth generalized Krylov subspace; thus,

(17)

The dimension of �m is denoted by lm. The scalar ωm = lm – lm – 1, m ≥ 1 is called the width of the mth layer.
This scalar is the increment in dimension obtained by adding the vectors in the mth layer to �m − 1 and by
taking the span of the extended system. By definition, the width of the zeroth layer is one.

Turning back to matrix (16), we can say that the order of the diagonal block Hii is ωi – 1 (i = 1, 2, …). For
a general normal matrix A, the scalars ωi increase slowly in accordance with the formula

It follows (again, see [2]) that the number of nonzero entries in H does not exceed . Note that, if the
Arnoldi method (which is a non-Hermitian analog of the Lanczos method) were applied to A, then the nor-
mality could not be used and the process would result in a Hessenberg matrix in which the number of non-

zero entries is ≈ .

Suppose that a normal matrix A satisfies the additional relation

(18)

where g(x, y) is a polynomial of degree k � n. Then, beginning at i = k, the orders of the diagonal blocks Hii

in matrix (16) stabilize at k. In this case, H can be regarded as a band matrix whose bandwidth does not
exceed 3k. Condition (18) is equivalent to the requirement that the spectrum of A belong to a plane algebraic
curve of degree k.

b Ab A*b A
2
b AA*b A*2b A

3
b …, , , , , , ,

H11 H12   

H21 H22 H23  

 H32 H33 …
 …⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

�m A b,( ) span W A A*,( )b: deg W m≤{ }.=

ωi i 1.+=

3 2n
3/2

1
2
---n

2

g A A*,( ) 0,=
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4. METHOD MINRES-CN FOR CONJUGATE-NORMAL MATRICES

Following Section 2, we associate the matrix  with an n × n matrix A. It is easy to verify that A is con-

jugate-normal if and only if  is normal in the conventional sense.

Fix a unit vector q1 ∈ �n
 and define a vector v by formula (13). Assuming that A is conjugate-normal,

we construct the generalized power sequence generated by  and v. This yields the sequence

(19)

The upper halves of these vectors form the sequence

(20)

Define the layers in this sequence as the projections onto �
n
 of the corresponding layers in sequence (19).

Thus, the vectors  and  form the first layer; , , and A*ATq1 form the second layer;

etc. Following Section 3, we define the width  of the mth layer as the increment in the dimension of the
span of the vectors in the first i layers when we pass from i = m – 1 to i = m. It is obvious that

For m = 0, we set  = 1.

Suppose that the span of sequence (20) is the entire space �
n
. Then, the orthogonalization of this

sequence (understood in the same sense as in CSYM) produces an orthonormal basis q1, …, qn. Define

From the coefficients hij calculated in the course of the orthogonalization, we form the matrix H. It has the
block tridiagonal form (16) and the orders of its diagonal blocks are given by the scalars . Moreover, it
holds that

(21)

that is, A and H are unitarily congruent.
The block tridiagonal form of H means that, working with the vector Aq, where q belongs to the mth

layer, we can perform orthogonalization only with respect to the vectors , where qj belongs to either the
same layer m or the layers m – 1 and m + 1. In other words, the depth of the recursion defining the next
vector q does not exceed  +  + .

If  satisfies the equation

(22)

where g(x, y) is a polynomial of degree k � n, then, beginning at i = k, the orders of the diagonal blocks Hii

stabilize at k.
The method MINRES-CN, which we propose, combines the orthogonalization of sequence (20) (which

is not constructed explicitly) with the Galerkin principle as applied to the trial subspaces �k (see (11)). As
in CSYM, we expect that an approximate solution of reasonable quality can already be found for k � n; that
is, we do not need to construct the entire basis q1, …, qn and the entire matrix H.

Â

Â

Â

v , Âv Aq1

Aq1⎝ ⎠
⎜ ⎟
⎛ ⎞

, Â*v
A*q1

A
Ú
q1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

, Â
2
v

ALq1

ALq1⎝ ⎠
⎜ ⎟
⎛ ⎞

,= = =

Â Â*v AA
T
q1

AA*q1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

, Â*2
v

A*A
T
q1

A
Ú
A*q1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

, ….= =

q1 Aq1 A*q1 AAq1 AA
T
q1 A*A

T
q1 AAAq1 …., , , , , , ,

Aq1 A*q1 AAq1 AA
T
q1

ω̃m

ω̃m ωm, m≤ 1 2 …., ,=

ω̃0

Q q1q2…qn( ).=

ω̃i

AQ QH;=

q j

ω̃m 1– ω̃m ω̃m 1+

Â

g Â Â*,( ) 0,=
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5. METHOD MINRES-CN2

MINRES-CN2 is a specialization of MINRES-CN for the case where the matrix  associated with a
conjugate-normal matrix A satisfies Eq. (22) with a second-degree polynomial g. It can be shown (see [3])
that, in this case, A is either symmetric, skew-symmetric, or satisfies an equation of the form

(23)

An equivalent description of this case can be given in terms of scalars known as the coneigenvalues of A
(e.g., see [4, Section 3]); namely, all the coneigenvalues of a conjugate-normal matrix A must belong to a
plane central curve of the second degree. Its equation has the form

(24)

The discussion in the preceding section implies that the condensed form H of A is a block tridiagonal
matrix in which H11 is a scalar, while all the subsequent diagonal blocks have an order of two. The orthonor-
mal sequence q1, q2, … is constructed in the following way:

1. The choice of a unit vector q1 can be regarded as the first step. If one solves the linear system Ax = b,
then vector (10) is an appropriate choice.

2. At the second step, the vector Aq1 is orthogonalized to ; that is,

where

(25)

Now, we set

.

(We assume that h21 ≠ 0; similar assumptions are made at the subsequent steps.)

3. At the third step, the vector ATq1 is orthogonalized to  and ; thus,

Here, the coefficient

is already known (see (25)), while

After calculating w3, we set

The second and third steps produce the vectors q2 and q3, which, in combination with q1, form an
orthonormal basis in the subspace

�1 = span{q1, , }, (26)

spanned by the initial segment of sequence (20). This completes the processing of the first layer in this
sequence.

The purpose of several subsequent steps is to orthogonalize the vectors in the second layer of sequence (20)
to the already available vectors q1, q2, and q3. There are three vectors in the second layer; however, according
to (23), only two of them are linearly independent over subspace (26). Consequently, it suffices to orthogo-
nalize two vectors in the second layer to q1, q2, and q3. Recall that sequence (20) is not constructed explicitly
and the vectors in its second layer can be obtained by multiplying A and AT by the vectors q2 and q3 in the
first layer and by applying the componentwise conjugation to the calculated products. Since only two lin-
early independent vectors over (26) are required, we can calculate the products Aq2 and Aq3. Thus, the fourth
and fifth steps are performed as follows.

Â

aAA 2bAA* cA
T
A* dIn+ + + 0.=

αx
2 βy

2 γ+ + 0.=

q1

w2 Aq1 h11q1,–=

h11 Aq1 q1,( ).=

h21 w2 2, q2 w2/h21= =

q1 q2

w3 A
T
q1 h11q1– h12q2.–=

h11 A
T
q1 q1,( ) q1 Aq1,( ) Aq1 q1,( )= = =

h12 A
T
q1 q2,( ).=

h13 w3 2, q3 w3/h13.= =

Aq1 A*q1
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4. The vector Aq2 is orthogonalized to , , and ; that is,

Here, h12 is the coefficient calculated at the preceding step, while

After finding w4, we set

5. The vector Aq3 is orthogonalized to , , , and ; thus,

Here, only h13 is known (after the third step); three remaining coefficients are calculated anew by the for-
mulas

After calculating w5, we set

Now, we have found the vectors q4 and q5, which, in combination with q1, q2, and q3, form an orthonormal
basis in the subspace

spanned by the zeroth, first, and second layers in sequence (20). Moreover, we have calculated the entries
in the first three columns of the condensed form H.

At the next two steps, we work with the matrix-vector products Aq4 and Aq5. The new fact is that these
vectors do not need to be orthogonalized to . Indeed, we already know that the entries (1,4) and (1,5) of
H are zero. This is also obvious from geometric considerations: the scalar product

must vanish because  belongs to the subspace �1, while q4 is orthogonal to this subspace. The same

is true of the scalar product (Aq5, ).

Thus, the vectors q6 and q7 are found from the relations

and

In the last relation, the recursion attains its maximal depth of six.

The subsequent steps are similar. The vector  (m ≥ 4) is calculated by orthogonalizing Aq2m – 2 to the

vectors , , , and . Then, Aq2m – 1 is orthogonalized to the same four vectors and the

found vector . Normalizing the resulting vector, we obtain .

Now, we discuss the procedure for calculating an approximate solution to the system Ax = b. Suppose
that 2m + 1 steps of the above recursion have already been completed. Then, we have the orthonormal vec-
tors q1, q2, …, q2m + 1 and the first 2m – 1 columns of the block tridiagonal matrix H. Furthermore, the vector
relations describing the orthogonalization process can be combined into a single matrix equality

(27)

Here,

Q2m – 1 = (q1q2…q2m – 1), 

q1 q2 q3

w4 Aq2 h12q1– h22q2– h32q3.–=

h22 Aq2 q2,( ), h32 Aq2 q3,( ).= =

h42 w4 2, q4 w4/h42.= =

q1 q2 q3 q4

w5 Aq3 h13q1– h23q2– h33q3– h43q4.–=

h23 Aq3 q2,( ), h33 Aq3 q3,( ), h43 Aq3 q4,( ).= = =

h53 w5 2, q5 w5/h53.= =

�2 span q1 Aq1 A*q1 AAq1 AA
T
q1 A*A

T
q1, , , , ,{ }=

q1

Aq4 q1,( ) q4 A*q1,( )=

A*q1

q1

h64q6 Aq4 h24q2– h34q3– h44q4– h54q5–=

h75q7 Aq5 h25q2– h35q3– h45q4– h55q5– h65q6.–=

q2m

q2m 4– q2m 3– q2m 2– q2m 1–

q2m q2m + 1

AQ2m 1– Q2m 1– H2m 1– R2m 1– .+=
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and H2m – 1 is the order 2m – 1 leading principal submatrix of H. The matrix residual R2m – 1 has zero columns,
except for the last two ones, which have the form

(28)

and

(29)

As an approximate solution xm, we take a vector x in the subspace

�m – 1 = span{q1, …, q2m – 1} 

for which the residual

r(x) = b – Ax 

is orthogonal to the subspace

In other words, xm is determined by the conditions

(30)

We seek xm in the form

(31)

where

ym = (η1, …, η2m – 1)T. 

Substituting (31) into (30) and using (27), we have

(32)

Relations (10), (28), and (29) imply that

Here,  is the first coordinate vector of the space �
2m – 1

. Equalities (32) take the form

(33)

If H2m – 1 is a nonsingular matrix, then system (33) determines a unique vector ym and, hence, the desired
approximate solution xm. The block tridiagonal form of this matrix makes it possible to solve (33) using
O(m2) operations.

However, neither xm nor the (complete) vector ym have to be calculated as long as the residual r(xm) is
large. The norm of the residual can be found even if only the last two components of ym are known. Indeed,
r(xm) belongs to the subspace

.

In view of (30), it has zero components along the vectors , …, . The two remaining components

corresponding to  and  are

and

Thus, we have

(34)

When passing from m to m + 1, we can update value (34) in the same economical way as in GMRES and
MINRES-N2 (see [5, Sections 5, 6]).

r2m 2– h2m 2m 2–, q2m=

r2m 1– h2m 2m 1–, q2m h2m 1 2m 1–,+ q2m 1+ .+=

�m 1– span q1 … q2m 1–, ,{ }.=

Q2m 1–
T

b Axm–( ) 0, xm �m 1– .∈=

xm η1q1 … η2m 1– q2m 1–+ + Q2m 1– ym,= =

0 Q2m 1–
T

b AQ2m 1– ym–( ) Q2m 1–
T

b H2m 1– ym– Q2m 1–
T

R2m 1– ym.–= =

Q2m 1–
T

b b 2e1
2m 1–( )

, Q2m 1–
T

R2m 1– 0.= =

e1
2m 1–( )

H2m 1– ym b 2e1
2m 1–( )

.=

�m span q1 … q2m 1– q2m q2m 1+, , , ,{ }=

q1 q2m 1–

q2m q2m 1+

h2m 2m 2–, η2m 2– h2m 2m 1–, η2m 1–+ h2m 1 2m 1–,+ η2m 1– .

r xm( ) 2
2

h2m 2m 2–, η2m 2– h2m 2m 1–, η2m 1–+
2

h2m 1 2m 1–,+ η2m 1–
2
.+=
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6. NUMERICAL RESULTS

In this section, we discuss some numerical experiments in which MINRES-CN2 was compared with
GMRES. In this comparison, the convergence rate was the basic performance criterion. It is well known (see
[6]) that, by an appropriate unitary congruence, every conjugate-normal matrix can be transformed into a
real block diagonal matrix with diagonal blocks of orders one and two. Furthermore, the 2-by-2 blocks have
the form

(35)

It is obvious that such a block is a normal matrix, which implies that the entire block diagonal matrix is nor-
mal. Thus, to get an idea of the convergence rate of methods for conjugate-normal matrices, it suffices to
examine the systems Ax = b with matrices of the above form (despite the fact that any of these systems can
trivially be solved using O(n) arithmetic operations).

Block (35) has complex conjugate eigenvalues

aj ± ibj.

If aj ≥ 0, these scalars are identical to the coneigenvalues of this block. Otherwise, the coneigenvalues are
obtained by multiplying the eigenvalues by –1.

The blocks of order one (i.e., the diagonal entries) are eigenvalues of our matrix A, while their moduli
are coneigenvalues of this matrix.

Thus, the spectrum of A and its conspectrum do not differ if all the diagonal entries belong to the non-
negative semiaxis.

Recall that our conjugate-normal matrix A must satisfy an additional condition, namely, its conspectrum
must lie on a second-degree central curve. This condition was met in the following way: for a chosen curve
of type (24), the abscissas aj were pseudorandom numbers distributed uniformly on an appropriate interval.
The ordinates ±bj corresponding to these aj were determined from the equation of the curve. All the matrices
in our experiments were well conditioned because the semiaxes of ellipses were not too different from each
other and no points with large coordinates were taken on hyperbolas. In addition, no points close to the ori-
gin were taken on pairs of lines.

In all of our experiments, the order of systems was 2000. The right-hand sides were generated as pseu-
dorandom vectors with components distributed uniformly on (0, 1). The calculations were performed on a
2 Duo E630 OEM 1.86 GHz PC with core memory of 1024 Mb.

GMRES was represented by the Matlab procedure gmres; for MINRES-CN2, we designed our own Mat-
lab procedure.

To terminate the iteration, we used the condition

(36)

where ε is a given positive scalar. The value ||r(xm)||2 in MINRES-CN2 is calculated as explained in Section 5.
Example 1. The eigenvalues of A are uniformly distributed on the ellipse

x2/16 + y2/9 = 1. 

For ε = 10–6, the number of iteration steps in MINRES-CN2 is half as much as in GMRES. This double
superiority is somewhat lost when we compare the corresponding times: 0.59 s for MINRES-CN2 against
0.97 s for GMRES. A possible explanation is that our experimental program competed with a well-polished
procedure from Matlab.

For both methods, the residual norms are plotted as functions of the iteration step index m in Fig. 1.
In all the plots, ||b – Axm || is shown by × and ||b – AxGMRES || is shown by �. 
Example 2. The eigenvalues of A are uniformly distributed on the right half of the ellipse

By contrast with Example 1, GMRES converges faster than MINRES-CN2 (48 iteration steps and t =
0.58 s against 69 steps and t = 0.81 s; ε is the same as in Example 1). This is a manifestation of a well-known
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fact; namely, the situation where the entire spectrum of a system is contained in a half-plane whose bound-
ary passes through the origin is favorable for GMRES.

The graphs of the residual norms are shown in Fig. 2.

Example 3. The spectrum of A is uniformly distributed on the segments of both halves of the hyperbola

x2/4 – y2/9 = 1, (37)

corresponding to x for which

4 < |x | < 6. 

The behavior of both methods is similar to what we have seen in the case of the whole ellipse: for ε = 10–8,
GMRES needs 97 steps and the time t = 2.6 s, while MINRES-CN2 requires 59 steps and the time 1.4 s.

The graphs of the residual norms are shown in Fig. 3.
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Example 4. The spectrum of A is uniformly distributed on the segments of the right half of hyper-
bola (37) corresponding to x in the interval (2, 3); ε = 10–8. Here, we observe the same phenomenon as in
Example 2 (and the explanation is the same as in that example): GMRES converges faster than MINRES-CN2
(34 iteration steps and t = 0.52 s against 53 steps and t = 0.69 s).

The graphs of the residual norms are shown in Fig. 4.
Example 5. The spectrum of A is uniformly distributed on the segments of the pair of lines

corresponding to x with

8/3 < |x | < 20/3. 

We set ε = 10–5. In this experiment, MINRES-CN2 demonstrated a significantly better performance than
GMRES: 71 iteration steps and t = 1.61 s against 157 steps and t = 4.78 s.

y
3
4
---x,±=

10–6

20

10–4

10–2

100

102

10–10

0
Iteration step

 Residual norm

10–8

40 60 80 100

Fig. 3.

10–6

10

10–4

10–2

100

102

10–10

0
Iteration step

 Residual norm

10–8

6020 30 40 50

Fig. 4.



214

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 49     No. 2      2009

GHASEMI KAMALVAND, IKRAMOV

The graphs of the residual norms are shown in Fig. 5.
Example 6. For the same pair of lines as in the preceding example, the eigenvalues of A were chosen

only on the right rays, that is, for x in the interval (8/3, 20/3); ε is again 10–5. The convergence rate was about
the same for both methods: 25 iteration steps and t = 0.66 s for MINRES-CN2 against 23 steps and t = 0.62
s for GMRES.

The graphs of the residual norms are shown in Fig. 6.
Example 7. One-half of the eigenvalues of A are real and are uniformly distributed on the intervals

2 < |x | < 5. 

The remaining eigenvalues are purely imaginary and are uniformly distributed on the intervals

2 < |y | < 5. (38)

For ε = 10–5, the situation is very similar to that observed in Example 5: MINRES-CN2 needs 71 steps
and t = 1.72 s, while GMRES requires 169 steps and the time 5.34 s.
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The graphs of the residual norms are shown in Fig. 7.
Example 8. Here, we use the same pair of lines xy = 0 as in the preceding example. One-half of the eigen-

values are purely imaginary and are uniformly distributed on the intervals

The remaining eigenvalues are positive and are uniformly distributed on the interval (5, 8). The value of ε
remains as before. The convergence of both methods is the same as in Example 6: they require the same
time (0.97 s) and about the same number of iterations steps (39 steps for MINRES-CN2 against 36 steps for
GMRES).

The graphs of the residual norms are shown in Fig. 8.
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